Analysis 1
 31 January 2024

Warm-up: When do the curves $x=y^{2}$ and $x-5 y=6$ intersect?
$y^{2}-5 y=6 \rightarrow y=-1, y=6$

Area integrals

The area of a shape with $a \leq x \leq b$ and with curves on the top and bottom is

$$
\int_{a}^{b}(\underline{\operatorname{Top}(x)-\operatorname{Bottom}(x)}) \mathrm{d} x .
$$

The area of a shape with $c \leq y \leq d$ and with curves on the left and right is

$$
\int_{c}^{d}(\underline{\operatorname{Right}(y)-\operatorname{Left}(y)}) \mathrm{d} y .
$$

For some shapes, both methods are possible.

Example: Compute the area of the region bounded by $x=y^{2}$ and $x-5 y=6$.

$$
\text { Area } \left.=\int_{-1}^{6} \text { (right }- \text { left }\right) d y=\int_{-1}^{6}\left((6 y+6)-y^{2}\right) d y=\frac{343}{6}
$$

Volume integrals

Area is the integral of height, and volume is the integral of area.

Region rotated around x-axis

$$
\begin{aligned}
& V=\int_{a}^{b} \pi r^{2} \mathrm{~d} x \\
& V=\int_{a}^{b} \pi(f(x))^{2} \mathrm{~d} x
\end{aligned}
$$

Disk area depends on x

Task: Find the volume of the solid formed by rotating

$$
\left\{(x, y): 0 \leq x \leq \frac{\pi}{4}, 0 \leq y \leq \sin (x) \sqrt{\cos (x)}\right\}
$$

around the x-axis.

Answer: $\pi \frac{1}{3}\left(\frac{1}{\sqrt{2}}\right)^{3}=\frac{\pi}{6 \sqrt{2}}$
"Bonus topics" activity: discussion of some interesting problems involving sequence limits, derivatives, or integrals.

Celebration of Knowledge 2

The final exam is
Wednesday 7 February at 12:00 noon room 201 / C-1
and a second attempt one week later.

Topics can include...

- Limits (including

L'Hospital's Rule)

- Derivative rules
- Tangent lines
- Critical pts, min, max
- Inflection points, concavity
- Taylor polynomials
- Define and indefinite integrals (including substitution, parts)
- Area
- Volume

